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Abstract---Continuum theories of highly agitated granular flows have recently been developed based on 
ideas from the kinetic theory of gases, with the fluctuation velocity of the grains corresponding to the 
temperature of the gas. Most often the boundary conditions for a granular system at a wall have been 
taken to be the same as the boundary conditions for a gas (i.e. the "no-slip" boundary conditions on the 
average flow velocity and the temperature). However, it is clear from experimental observations that a 
significant slip can exist in the average flow velocity and temperature at a wall. 

In this paper, a model of boundary conditions on granular flows will be presented which incorporates 
the following points: 

1. The average flow velocity of the grains at the wall does not equal the wall velocity, with the shear 
stress at the wall being proportional to the difference in these velocities (the "slip velocity"). 

2. Small-amplitude vibrations of the wall can be regarded as one factor in an effective wall 
"temperature". The other factor is the effect of the roughness of the wall coupled with the 
slip velocity. The flux of "thermal" energy between the granular system and the wall is deter- 
mined by the relative values of this effective wall "temperature" and the granular system 
"temperature". 

3. Due to differences between grain-grain and grain-waU collisions, the density of the granular 
system may exhibit a "jump" at the wall. 

4. For walls of insufficient roughness, measured angles of effective internal friction may reflect 
more the effect of shearing at the wall than in the bulk. 

These boundary conditions are illustrated by solving a problem in Couette flow. 
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I N T R O D U C T I O N  

The a s sumpt ion  o f  b ina ry  coll is ions in highly ag i ta ted  g ranu la r  systems has led to the deve lopmen t  
o f  several  s imilar  theories  for  descr ib ing such systems (Ogawa  et al. 1980; H a f t  1983; Jenkins  & 
Savage  1983; Lun  et al. 1984). These theories  utilize ideas f rom the kinetic  theory  o f  gases, modif ied  
to include the effects o f  inelast ic  coll isions,  to ob ta in  con t inuum equat ions  for  the m o m e n t u m  and  
energy in the bu lk  system. 

In o rde r  to solve prac t ica l  p rob lems  with these theories,  b o u n d a r y  cond i t ions  are  requi red  which 
relate  the pa r ame te r s  o f  the g ranu la r  system ad jacen t  to a wall  to the forces and velocit ies associa ted  
with tha t  wall.  In  the con t inuum equat ions ,  these b o u n d a r y  cond i t ions  are  usual ly  given as: 

1. The  flow veloci ty at  the wall  is set equal  to the wall  velocity (the no-s l ip  condi t ion) .  
2. The  t empera tu re  o f  the system at  the wall is set equal  to the wall  t empera ture .  
3. The  dens i ty  o f  the system at the wall is assumed to be unaffected by  the presence 

o f  the wall. 

However ,  in the case o f  g r anu la r  systems, these s imple condi t ions  can no longer  be used: 

1. Exper imenta l  evidence indicates  that  slip between the flow veloci ty and  the wall  
veloci ty is a c o m m o n  feature  o f  g r anu la r  flow p rob lems  (Hanes  1987). 

2. In  the kinet ic  theory  o f  gases, the wall  is of ten t rea ted  as a single, infinitely large,  
infinitely mass ive  par t ic le  (Hende r son  et al. 1976; W a i s m a n  et al. 1976). I f  we 
app ly  this mode l  to the case o f  g ranu la r  flow, then the second m o m e n t  o f  the wal l ' s  
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velocity may be regarded as the wall's "temperature". This temperature will be 
determined by the balance between three effects: the generation of thermal energy 
by the shear stresses and slip velocity; the conduction of thermal energy between 
the wall and the particles; and the loss of thermal energy due to the inelasticity 
of grain-wall collisons. Since these mechanisms differ in details from the 
corresponding mechanisms in the bulk of the flow, the temperature of the wall 
may be significantly different from the temperature of the particles at the wall. 
These differences between grain-wall and grain-grain collisions may also cause the 
bulk density of grains at the wall to differ from the bulk density away from the 
wall. If, for example, the rebound velocity of a particle in a grain-wall collision 
were lower on average than the corresponding rebound velocity in a grain-grain 
collision, then each grain at the wall would occupy a smaller volume of space than 
a grain in the bulk would occupy. Thus, the bulk density (or equivalently the number 
density) of grains at the wall would be higher than the density away from the wall. 

Hui et al. (1984) presented a set of boundary conditions for the phenomenological theory of 
Haft (1983) based upon the rates of energy and momentum transfer at a wall. Although the slip 
velocity of the grains at the wall was included in the calculation of the momentum transfer, the 
thermal energy which would be generated by this slip was not included in the derivation of 
the energy transfer. Thus, the case in which a significant portion of the internal thermal energy 
of a granular flow is supplied by slip at the wall cannot be treated within this framework. 

Another set of boundary condition equations has been given by Jenkins & Richman (1986), both 
for a two-dimensional system of smooth circular disks as well as a three-dimensional system of 
spheres. Employing methods of averaging from the kinetic theory of dense gases, they derive 
expressions for the rate at which linear momentum and energy are transferred between the granular 
flow and the wall. Equating these expressions to the corresponding rates in the flow gives the 
boundary conditions. These authors were the first to emphasize the role of the normal stress 
boundary condition. However, in the application they discuss, a "slip" in number density at the 
wall was not allowed for, leading to an over-constrained set of equations, i.e. an additional 
boundary condition had been introduced, on the pressure, but no additional variables. Thus, the 
solution of a steady-state Couette flow problem required a unique number of flow disks across 
the gap. The physical difficulty with this result can be seen in the limit of zero wall velocity, where 
the Couette flow problem reduces to the problem of particles in a box with no flow. In the absence 
of allowing for a density "slip" at the wall, there is in general no way to arrive at a steady-state 
population of particles in the box. 

The concept of density slip, discussed in detail below, was introduced by Gutt (1987) in order to 
remedy this condition, and has subsequently been invoked by other authors as well (Hanes et al. 

1988). 
The theory of boundary conditions for three-dimensional systems presented here is derived in 

a manner similar to that used by Haft (1983) in obtaining the equations of motion for the bulk 
flow. In this model each microscopic process of interest, such as momentum transfer in grain-grain 
collisions, momentum transfer in grain-wall collisions, energy absorption in grain-grain collisions 
and so forth, is considered explicitly, and the corresponding local expressions for energy and 
momentum transfer within the bulk and between the bulk and the walls are derived. These 
expressions are suitably averaged and combined in order to arrive at the desired equations of 
motion, constitutive relations and boundary conditions. This approach does not start with a 
particle distribution function, contrary to the tack taken in some applications of kinetic theory, 
and hence it cannot calculate the precise magnitude of the dimensionless coefficients (q, r, t etc.; 
see below) which characterize each physical process when those processes are combined together 
in a balance law. On the other hand, in the present model these factors are not arbitrary but are 
known to be of order unity. Jackson (1986) has discussed how rigorous kinetic theory gives results 
which differ only slightly from ours. The advantage of the heuristic approach used here is that 
specific physical processes are identified clearly from the start at the microscopic level, and that 
their role in the equations of motion, constitutive relations and boundary conditions remains 
clear by virtue of the unique tag they carry in the form of a specific dimensionless constant. 
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These constants are not intended to be used as "fitting parameters", but rather as indicators of 
the importance and role of specific microprocesses. We also note that, over a very wide range in 
velocities and densities, there may in fact be slight variations in the values of the "constants" of the 
model (as is also true in kinetic theory). For our purpose here, which is to outline some new and 
interesting boundary effects in granular systems, we neglect any such variation, which is expected 
to be small. 

Working within this framework, our approach will be to introduce "slips" in the bulk density 
and thermal velocity, the necessity for which is argued below, as well as the more conventional 
slip in average velocity, and then to solve the problem of Couette flow, in which the properties 
of the grains and wall along with the wall velocity and Couette-cell width are given, and the 
pressure, shear stress and velocity profiles in the bulk are calculated. 

It should be noted that in the kinetic theory of granular flow presented by Haft (1983), the bulk 
density p is assumed to be essentially constant throughout the flow. This assumption is adopted 
here, so that the results apply mainly to dense systems. When small variations in the bulk density 
would have a significant effect (as in the collision rate), the variations are allowed by the use of 
the grain-to-grain spacing variable s. We will continue to use this formalism in describing the 
variation in density at a wall. 

T H E  G R A I N - W A L L  C O L L I S I O N  M O D E L  

The grains are assumed to be identical, inelastic, smooth spheres of diameter d and mass m. 
(In order to simplify our treatment of the boundary conditions, the spin of the grains will be 
ignored). The packing fraction is taken to be high (i.e. s < d) and the system is taken to be 
sufficiently agitated that the particles undergo only binary collisions so that the theory of Haft 
(1983) can be applied. In a collision, the particle is assumed to contact a section of the wall which 
has a local unit normal vector k (figure 1) and a coefficient of restitution ew. 

In calculating the results of a grain-wall collision, the mass of the wall will be taken as infinitely 
greater than the mass of a grain. 

The following assumptions are made about wall roughness: 

1. At the microscopic level (smaller than a grain diameter), the wall is smooth and 
frictionless. 

2. On a scale slightly larger than a grain diameter, the surface of the wall has a shape 
consisting of smooth undulations of amplitude less than a grain diameter. The 
assumption of a small amplitude is based on the idea that any feature of greater 
amplitude will tend to trap one or more particles, thus "healing" itself and 
forming a new boundary with small-amplitude undulations. [Surface "healing" 

Figure 1. Illustration of  a particle colliding with a rough wall, showing the unit normal collision vector k, 
and the unit vectors normal to the wall (n) and parallel to the wall (~). 



624 G.M. GUTT and P. K. HAFF 

is commonly seen in computer simulations of flow (Haft 1987); see also the 
discussion of self-bounding fluids in Hui et al. (1984).] The surface roughness 
is characterized by a distribution function for k, f(k), which is assumed to be 
isotropic. 

3. On average over distances much larger than a grain diameter, the wall is flat. 

In the present treatment of the boundary conditions, the position of the wall as a function of 
time will be allowed to have a random component. This random component will have an amplitude 
less than a grain diameter and can vary on a time scale similar to the time between collisions of 
the grains in the flow. (Motion with larger amplitudes or on longer time scales should be included 
in the macroscopic description of the boundary's position.) This effective random motion can arise 
from two uncorrelated sources: the vibrational motion of the wall and the slip velocity. 

The vibrational motion of the wall will be described by the second moment of its velocity, 
designated Vw. Even though this motion will be correlated over the entire length of the wall, it will 
be treated as contributing an uncorrelated random motion to the grains in view of the fact that 
the positions of the grains are not correlated over distances greater than a few grain diameters. 
Further discussion of the analogy between a small-amplitude high-frequency wall vibration and a 
thermal source is given by Haft (1983). 

The random motion due to the slip velocity can be quantified by considering the frame of 
reference in which the average velocity of the granular flow near the wall is zero. In this frame, 
the slip velocity coupled with the wall's roughness results in a fluctuation in the normal component 
of velocity in a grain-wall collision. This component of the surface velocity in the k direction (figure 
1) is us" k, where us is the slip velocity (us is taken to point along the wall, the • direction in figure 
1). Averaging this dot product over all possible values of k, and adding it in quadrature to any 
average externally driven vibrational velocity, gives the wall's effective vibrational velocity: 

w, efr=Vw+ ( u s ' k ) 2 f ( k ) d k = v ~ + u s  ( k ' Q ~ ( k ) d k = - v w + u ~ ( k ~ ) .  [l] 

In this equation, we have explicitly quantified the roughness of the wall in the term (k2). A 
perfectly flat wall will have (k~) = 0; and an increasingly rougher wall will have increasing values 
of (k~). 

Finally, the average rate at which grain-wall collisions take place is given by the slip velocity 
of the grain and the wall divided by the average grain-wall spacing: 

(v2+v~+us 
, [21 

Sw 

where v is the average thermal velocity of the grains. 
Since these sources of vibrational motion are regarded as random and uncorrelated, they are 

added in quadrature and the time average of any cross terms is assumed to vanish. 

THE BOUNDARY CONDITION EQUATIONS 

The pressure 

The pressure on the wall can be found by means of the cell model (Hirschfelder et al. 1964). The 
normal component (along n in figure 1) of the momentum transferred to the wall in a single 
grain-wall collision is of order 

2(k~>)'2. m(v: + v 2 + us 

Since the particle occupies a cell whose dimensions are of order d, the area across which this 
momentum transfer takes place is approximately d z. Combining these values with the rate at which 
grain-wall collisions take place, [2], gives the pressure on the wall: 

2 2 
p = twdp (v2+v2+ us (k~ ) ) ,  [3] 

Sw 
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where all of the proportionality constants have been incorporated into tw, a dimensionless constant 
of order 1. 

The pressure in the granular flow (as given by Haft) is p --- tdpv2/s, where t is a dimensionless 
constant of order 1. Setting these two expressions equal gives the value of the grain-wall spacing: 

( tw v2 +V2w-t-Us<kT~.~ s 
sw = t v2 ,]. [4] 

This boundary condition is the result of the fact that a particle in the layer adjacent to the wall 
"sees" a different environment on one side of its cell from the others. In order to transmit a constant 
pressure in the direction perpendicular to the wall, the grain-wall spacing must adjust accordingly. 
This is equivalent to a "slip" or jump in the bulk density of the system at the wall. [Although density 
and mean free path do not stand in a strictly one-to-one relation at high density, because of 
geometrical packing effects, we equate for the purposes of this paper, "density slip" and "mean 
free path slip", see Haft (1983).] 

This "slip" in the bulk density is actually a first-order approximation to the more complex 
oscillations in bulk density seen in calculations and simulations of hard-sphere fluids bounded by 
a flat wall (Henderson et al. 1976; Snook & Henderson 1978; Waisman et al. 1976). These variations 
in bulk density can arise even though the particle--particle and particle-wall collisions are perfectly 
elastic, simply due to the layering effect of the particles near a flat wall (Snook & Henderson 1978). 
Since the wall we use here is not perfectly flat, it would not be appropriate to go beyond this 
first-order approximation. 

The shear stress 

On average, a collision between a grain and a rough wall will have a component of momentum 
transfer along the direction of the slip velocity. This momentum transfer results in the transmission 
of shear stress between the wall and the granular flow. 

To calculate this shear stress, note that the normal velocity in a grain-wall collision due to the 
slip velocity is (Us" k)k; and its component parallel to the wall is (us" k) (k. ~) = usk~. Multiplying 
this by the particle mass and averaging over all possible values of k gives the average component 
of  momentum transfer parallel to the wall: 

f k~f(k) dk = mus (k~). m u  s 

Taking into account the area and rate of collisions, the flux of lateral momentum will be 

(v :+  2 2 2 Vw + Us ( k~ >)1/2 
a = q w a p U s < k ~  > , [5] 

Sw 

where qw is a dimensionless constant of order 1. 
Equation [5] seems to make a puzzling prediction, namely, that the shear stress vanishes if the 

slip velocity us = 0. Yet we know that, for fluids in general, a no-slip boundary condition does not 
imply a vanishing stress. In the microscopic granular flow model of Haft  (1983) used here, us is 
a dependent variable, a quantity whose value must be computed. It is not something we can adjust 
by hand. Therefore, the no-slip condition is not to be specified a priori by setting Us = 0, but is a 
condition which might or might not turn out to have validity in the course of the calculation. And, 
in particular, the no-slip condition does not mean us = 0. It only means that u, is small compared 
with the total shear U (we set Vw = 0 for simplicity). In fact, Us cannot vanish under any flow 
conditions, save the no-flow case, as can be seen by noting that all velocities are scaled by U. 

The shear stress in the granular flow (Haft 1983) is 

~It 2 f) ~Id 
a =~l~y =qd P s ~ y '  

where q is a dimensionless constant of order 1. 
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Equating these two fluxes of lateral momentum gives the boundary condition relating the slip 
velocity and the normal derivative of the flow velocity: 

2 2 I/2 __Ou =----qwus (k~) (v2+V2w+u~(k')) s 
Oy q d  v Sw 

Substituting from [4] for the ratio of spacings gives 

_ O 
0u qw t U~(k,2 ) 2 2 2 I/2" [6] 
Oy q tw d (v2+Vw+U,(k,)) 

This nonlinear relation between the slip velocity and the shear rate reduces to that obtained by 
Hui et al. (1984) in the limit where the particle fluctuation velocity is much greater than the wall's 
effective fluctuation velocity. Again, for the same reason as in [5], the flow velocity gradient remains 
nonzero even when the no-slip approximation is a good one. 

The condition of isotropy in the distribution function f(k)  allows us to assume collinearity of 
the shear stress and slip velocity at the wall. I f f ( k )  were anisotropic (e.g. a "washboard" wall 
surface oriented obliquely to the flow), the shear stress would be related to the slip velocity through 
a second rank tensor. 

The thermal energy flux 
The thermal energy of particles colliding with a wall is affected by two competing processes. The 

inelasticity of grain-wall collisions results in a loss of thermal energy, while the effective fluctuation 
velocity of the wall will supply thermal energy to the grains. 

The loss of thermal energy in a collision due to the particle's thermal velocity and inelasticity 
will be of order 

m(1 -e2w)V 2. 

The gain of thermal energy in a collision due to the wall's effective temperature will be of order 

m(l  2 2 + ew) Vw.eer. 

(Note that by using the wall's effective temperature in this expression we have included the thermal 
energy generated by the combination of shear stress and slip velocity.) Combining these two effects, 
substituting for the wall's effective temperature, [1], and factoring in the area and rate of collisions, 
we get an expression for the flux of thermal energy at the wall: 

= Vw+U,(k~) -(1 v2 [71 
Q -rwdp 2 2 2 (1 (v2+Vw+U~(k,)) 

$w 

The flux normal to the wall of thermal energy in the granular flow (Haft 1983) is 

Q = - K  O-~- ( ~ )  = s p-~yO (~v2), 

where r and rw are dimensionless constants of order 1. 
Setting these expressions equal and substituting [4] gives the final boundary condition: 

- -  - -  u ,  ~k~  ) v 2 dy v2 - - -  Vw+ 2 2 
r twd L (1 Yew) (v2+v~+u2,<k2,>P/2" 

[8] 

STEADY-STATE COUETTE FLOW 

In gravity-free, steady-state Couette flow, the walls are driven at a given velocity parallel to 
their surfaces. Figure 2 illustrates the geometry of the system; the plates are of infinite extent in 
the x- and z-directions with the origin of the y-axis midway between them. The number of grains 
in the channel will be specified by the parameter Ah, the free space remaining when all of the grains 
are packed towards one wall (figure 3). Due to symmetry the flow variables will be functions of 
y only. Combining this with the condition V • u = 0 leads to the conclusion that the only nonzero 
component of the flow velocity u is u x. 
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Figure 2. Illustration of the Couette flow geometry. 

The equation governing the evolution of momentum in a steady granular flow is (Haft 1983): 

c3 - ~ Ip i' ~u~ ~Uk'~-] 

Evaluating the x- and y-components of this equation gives the respective results that the shear 
stress [a0 = ~l(dux/dy)] and the pressure (P0) are constant throughout the flow. 

The equation for the total kinetic and thermal energy of the system is 

~pu +~pv = .uk +~ +~v 2 - u , . t . ~ + ~ j - s c  .v 2 - z  

Figure 3. Illustration defining the free-space parameter Ah. 
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Setting to zero the derivatives with respect 

-,9 [ g̀ux 0= LU . y 
The coefficient of thermal diffusivity (K) and 

to t, x and z, and setting Uy ~-~ U z = 0 leaves 

--K a-~-(~PV2)] 
the thermal energy sink (I) are given by 

i) 3 
K = rd 2 v- and l = T p - - ,  

S S 

where 7 is a dimensionless constant related to the coefficient of restitution of a particle-particle 
collision e D' oc(1 - e2)]. 

Substituting for these and for the constant shear stress and pressure gives the equation for the 
thermal velocity within the granular flow: 

02/)  0)2/.) 
0 = ~ + , [9] 

where 

co2 1 [t2 g [10] 

The general solution for the thermal velocity is 

v(y)  = 2v0 cos(coy). [11] 

Both v0 and co (i.e. ao/Po) are determined by the boundary conditions. (Note that this assumes 
co2> 0; for the case of 092< 0, the trigonometric functions in this and succeeding equations are 
replaced by the corresponding hyperbolic functions.) 

Combining [3] (with pressure equal to P0) and [5] (with shear stress equal to a0), we can solve 
for the slip velocity in terms of the thermal velocity of the grains at the wall: 

2 2 - 
us=v(h/2) aot, tr~t~ "~ 

1/2 

2 2 2 poqw<k~> 1 [12] poqw<k,>J 

Substituting this into [8] gives 

i i F( ll -P ~ | (1 - Ftr---~ "~ ' ̀2 [13] 

1 P° ~ j 

. . . .  tw/(qw<k~)). This is a transcendental where D (rtw)/(rwt), E (1 ew)/(l+ew) and F 2 2 2 
equation for a~/p~ in terms of the particle properties (d, q, r, t and 7), the wall properties (ew, qw, 
rw, tw and <k 2, >) and the inter-wall spacing h. The equation can be solved numerically to obtain 
the shear stress to pressure ratio as a function of wall roughness <k 2 >. An example is given in figure 
4. This ratio represents the tangent of the effective dynamical internal friction angle of the 
grain-mass-plus-wall system, which is essentially zero for nearly smooth walls, since the walls offer 
almost no resistance to shear. As the walls are roughened, the coupling between the walls and the 
grain mass increases [as evidenced by the rapidly decreasing slip velocity (figure 5)], finally reaching 
a point of saturation beyond which increasing wall roughness has little effect. This presumably 
reflects the fact that the main grain mass has become much weaker to shear than the wall-grain 
layer. This is a significant result because it means that if the walls of a shear cell apparatus designed 
to measure internal stresses are insufficiently rough, the measurements relate principally not to the 
effective internal friction in the bulk, but to the effective friction offered by the wall. 

The average flow velocity is obtained from integrating du/dy = tr0/r/: 

u(y ) = 2t tr o v__ L sin(coy), [14] 
q P0 cod 

where now u -= ux. 
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Figure 4. Ratio of  shear stress to pressure, ao/Po , vs wall 
roughness, (k~) ,  at a fixed wall velocity. The values of  the 
constants used in this numerical simulation are: 7 =0.16, 
q = 0 . 2 5 ,  r = l . 0 ,  t = l . 0 ,  e , = 0 . 9 6  (curve a), e , = 0 . 9 2  
(curve b), e ,  = 0.84 (curve c), qw = 1.0, r ,  = 1.0 and t ,  = 0.5. 
No stress is transmitted for perfectly smooth walls. As wall 
roughness increases, the system becomes more resistant to 
shearing until the shear resistance of  the granular fluid itself 

becomes the determining factor. 
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Wall roughness 
Figure 5. Ratio of  slip velocity to wall velocity, us /u , ,  vs wall 
roughness, (k~) ,  at a fixed wall velocity. The slip velocity 

decreases with increasing roughness. 

The wall velocity (with respect to the center of the channel where the flow velocity vanishes) is 
the sum of the slip velocity and the flow velocity at the wall: 

t a0 1 . c0h = o~h (P~_Ftr2~ -~ . . . .  sin - -  [15] Uw 2v0 cos 2 (k~) 1 P~ J qpoogd 2 " 

The ratio of slip velocity to wall velocity is independent of v0, and is shown in figure 5. The slip 
velocity decreases with increasing surface roughness as expected. 

The ratio of  adsorbed thermal energy flux to generated thermal energy flux at the wall is also 
independent of  v0, and is given by 

Q~ E (  1 - F a ~  
_ ) 

Qg Fa0 2 

po 

This ratio is plotted vs wall roughness in figure 6. 
The value of v0 is determined by the number of grains in the channel, as expressed by the 

parameter Ah. Beginning with the expression for Ah in terms of s(y): 

3 fh/2 
= s ( y )  dy; Ah d.)-h/2 

substituting s(y) = tdpv2(y)/po and integrating gives 

v~ = o9 Ahpo 
6tp [sin(oh) + cob ]" [16] 

Combining [11] and [15] gives the ratio of  particle thermal velocity at the wall to wall velocity, 
which is shown in figure 7. At zero wall roughness no coupling of  the wall to the fluid is possible, 
and the thermal velocity then vanishes. With increasing wall roughness more and more energy is 
transmitted to the grain mass and the thermal velocity near the wall increases. However, the slip 
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Figure 6. Ratio of absorbed thermal energy flux at the wall 
to the energy flux generated there, Qa/Qg, vs wall roughness, 

(k~), at a fixed wall velocity. 
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Figure 7. Ratio of particle thermal velocity at the wall to 
wall velocity, v(h/2)/u,, vs wall roughness, (k~), at a fixed 
wall velocity. The thermal velocity is zero for perfectly 
smooth walls since in that case no energy can be transmitted 
from the wall to the fluid. After increasing with increasing 
roughness, v/u,,, falls slightly (in this particular example) 
because the increase in stress does not quite compensate the 
decrease in slip velocity, and it is the product of stress and 
slip velocity which is ultimately responsible for generated 

heat at the wall. 

velocity, which is the source of thermal energy, steadily decreases with increasing (k 2 ) (figure 5), 
and the plot of thermal velocity vs wall roughness shows a maximum, with the thermal velocity 
slowly decreasing at high values of the roughness. [Whether a maximum always exists is not clear, 
since, while u s decreases, tr is increasing with (k~)  (figure 8), and it is their product which 
determines the energy generation rate.] 

Using [15] and [16] we obtain the normalized shear stress 

3 a 0 h 2 [sin(o)h) h i  

_1 

~2//2Uw'~2 / -_PL t tr 0 1 . o9h 

Fo0  +qFo  sin Y cos y L<k ) 

w h e r e  p p  is the particle material density. Setting h equal to 10 particle diameters and Ah equal to 
3.25 particle diameters (corresponding to a volume fraction of 0.5) we obtain plots of the 
normalized shear stress and normalized pressure as functions of wall roughness (figures 8 and 9). 
Both shear stress and pressure vanish for perfectly smooth walls and increase with (k~)  as 
expected. 

The variations in flow properties across the channel are shown in figures 10(a-c), the character 
of the flow changing as the wall roughness varies. For  small values of  (k~)  (nearly smooth walls) 
the shear stress to pressure ratio is small (figure 4) and off < 0. In this case, the walls act as a net 
source of thermal energy flux (Qa/Q8 < l), and the thermal velocity drops as we move from the 
wall to the center of  the flow [figure 10(a), curve 1]. The flow velocity has a (slight) inflection point 
[figure 10(b), curve 1] and the density is greatest in the center of  the channel [figure 10(c), curve 1]. 
As the wall roughness is increased, we may reach the special solution called simple shear flow. Here 
the thermal velocity [figure 10(a), curve 2] and the particle-particle separation [figure 10(c), curve 2] 
are constant throughout the flow; the flow velocity increases linearly with distance [figure 10(b), 
curve 2]; and the walls act as neither a source nor a sink of thermal energy flux (QJQs = 1). For  
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Figure 8. Normalized shear stress, {~ro/Lor, d2(2u,,,/h)2]}, vs 
wall roughness, (k~), at a fixed wall velocity with h = 10 
grain diameters and Ah = 3.25 grain diameters. There can be 
no transmitted stress for perfectly smooth walls. Stress then 

increases as (k~) increases. 
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Figure 9. Normalized pressure, {po/[ppd2(2u,/h)2]}, vs wall 
roughness, <k~>, at a fixed wall velocity. Like shear stress, 
the pressure must vanish for perfectly smooth walls and 

increase with increasing <k~ >. 

granular systems, simple shear flow is not a common condition; it is only achieved by careful 
"tuning" of  the wall parameters. Finally, for sufficiently rough walls, the shear stress to pressure 
ratio may be large enough that the rate of  thermal energy generation in the flow exceeds the rate 
of  thermal energy loss. This leads to a thermal velocity profile which has a maximum in the center 
of  the flow [i.e. 092 > 0; figure 10(a), curve 3], with the walls acting as a net energy sink (Qa/Qg > 1). 
In this case the flow velocity again shows a mid-channel inflection [figure 10(b), curve 3], while the 
density is a minimum in the center of  the channel [figure 10(c), curve 3]. In general, the shape of  
the solution to the energy equation as a function of  the strength of  microscopic processes (r, q, t 
etc.) can be determined directly from [10] and [13]. 

Some effects on the thermal velocity of  changes in the constants q (the dimensionless constant in 
the coefficient of  viscosity), tw (the dimensionless constant in the equation of  state for particle-wall 
collisions) and ew (the coefficient of  restitution for particle-wall collisions) are shown in figures 
1 l(a), (b) and (c), respectively. The particle constants and wall roughnesses are the same as in 
figures 10(a--c), except as noted. The curves in figures 11 (a-c) should be compared with those in 
figure 10(a). In figure 1 l(a), q has been increased by a factor of  2. An increase in q means that 
a lower shear rate can sustain a higher shear stress, leading to more slip at the wall. This increased 
slip results in a greater input of  thermal energy from the wall to the flow, giving higher thermal 
velocities at the wall. In figure 11 (b), t ,  has been increased by a factor of  2. An increase in tw means 
the pressure on the wall can be sustained with a larger particle-particle spacing at the wall, again 
leading to a higher slip velocity. The increase in the flow of  thermal energy away from the 
wall can be seen. In figure 1 l(c), e ,  has been increased from 0.84 to 0.96. An increase in ew means 
that less energy is dissipated in particle-wall collisions. This will also result in a higher flux of  
thermal energy from the walls to the grains, as shown in the figure. In sum, modest changes of  
the system constants within this range of  expected values lead to modest changes in the associated 
flow fields. 

Finally, we note that throughout most of  the range of (k~ >, the thermal velocity of  the particles 
at the wall is a nearly constant fraction of  the wall velocity. This constant fraction decreases 
as the walls are made more lossy (i.e. as e,  is reduced). The slip velocity as a fraction of  wall 
velocity is seen to decrease with increasing wall roughness, as is expected. However, the lossiness 
of  the walls has little effect on the slip velocity. Thus, it appears possible to set the slip velocity 
and the thermal velocity at the wall independently by adjusting the roughness and the lossiness of  
the wall. 
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Figure I0. Variations in flow properties across the channel for several wall roughness values. The values 
of the constants are the same as in figure 4, curve c. The wall roughness values are (k  2 ) = 0.0625 (curve 1), 
(k  2) = 0.125 (curve 2) and (k~)  = 0.25 (curve 3); (a) the particle thermal velocity to wall velocity ratio 
v/uw; (b) the flow velocity to wall velocity ratio u/uw; (c) the particle-particle separation to particle 

diameter ratio s/d. See the text for a discussion. 

CONCLUSION 

We have presented a self-consistent set of boundary condition equations for a three-dimensional 
system of smooth, spherical particles slipping along a rough, possibly vibrating wall. These boundary 
conditions are based upon the postulated existence of slips in the bulk density, the average velocity 
and the thermal velocity at the wall. These slips represent first-order approximations to boundary 
effects in granular flows. We have solved the problem of Couette flow for the case of fixed wall 
velocity and particle number. In order to solve other problems of interest (such as flow down an 
inclined plane) the boundary conditions at a free surface will have to be developed. 

One area for further study involves the effects of particle spin. Their inclusion will require the 
introduction of additional slips and boundary condition equations, as suggested by two-dimensional 
particle dynamics simulations (Campbell & Gong 1987). Also, we have assumed that walls with 
large roughness elements will tend to "heal" themselves through the trapping of particles. This 
trapping process has been discussed qualitatively (Hui et al. 1984; Haft 1987), but needs to be 
investigated in more detail. 
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Figure I 1. Variations in particle thermal velocity with changes in particle or wall properties. The values 
of the constants and wall roughness are the same as in figures 10(a--c), except: q = 0.5 in part (a), tw = 1.0 

in part (b) and ew = 0.96 in part (c). See the text for a discussion. 
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